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Introduction

Current generation silicon CMOS devices have a gate size of 0.25 microns while research
is active to reduce the fc;mn size to 0.18 and 0.13 microns. It is expected by 2007, the
feature size will be below 0.1 micron (100 nm). At feature sizes smaller than 100 nm,
problems due to physics may arise, preventing successful operation of the device; even if
this is not the problem, manufacturing problems may ptcv&lt realization of devices
smaller than 100 nm feature size. The manufacturing problems include viable
lithography technique, interconnects, and many other aspects of integrated circuit
production. As a result, there has been activity in the areas of alternative device
structures, architectures, quantum-and other novel computing techniques. Some of these

research efforts are expected to come into fruition in the next 20 years when the silicon

engine may potentially run out of steam.
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Nanotechnology is receiving much attention for the possibility to develop inexpensive,
‘bottom-up’ manufacturing techniques as opposed to the present ‘top-down’
miniaturization [1]. Carbon nanotube (CNT) based nanotechnology appears to be
promising for future nanoeiectronics. The CNT is an elongated fullerene and is a long

tube compared to its diameter. It can be thought of as a two dimensional graphene sheet



rolled into a tube. Depending on how the rolling is done, the CNT may be either metallic
or semiconducting. Indeed, both metallic and semiconducting types of CNTs have been
observed experimentally. This gives rise to intriguing possibilities to put together
semiconductor-semiconductor and semiconductor-metal junctions, and diodes, and

transistors [2]. CNT is also being investigated as a field emitter source for flat panel

display applications [3].

The potential for nanotubes in nanoelectronics, displays, nanosensors and devices is
enormous. However, the challenges ahead are also numerous. Controlled growth on
patterned substrates, control of nanotube chirality, diameter and properties,
characterization, development of nanoelectronics and computing building blocks and
architectures pose some of the challenging issues. In this paper, some recent results on

growth as well as computational modeling of transport issues in nanotubes are presented.



Carbon Nanotubes: An Overview

Nanotube structures arise by rolling a graphene sheet into a cylinder in a way that the
lattice points fold onto each other. The structures are uniquely defined by a lattice vector
¢ =na + mb where a and b are the atomic lattice unit cell vectors and n and m are two
integer indices. It has been shown that when (n-m)/3 is an integer, then the nanotube is
metallic; otherwise it is a semiconductor [4]. The bandgap is given by E, =2y,a,_./d
where a_ is the C-C bond length, d is nanotube diameter and y, is the near-neighbor
hopping parameter. 'Electmnic properties can be tailored through application of an
external magnetic field, introduction of mechanical deformation or creation of structural
defects. These intriguing electronic properties prqvidc an opportunity to create metal-
semiconductor and semiconductor-semiconductor junctions which would lead to
functional devices. In order to realize this potential, it is critical to' understand how
manipulation of the nanotubes affects the bandgap. Theoretical work combining
‘molecular mechanics, dynamics and tight binding calculations has been used to study the
effect of uniaxial deformation and torsion on the CNT electronic propqrtie_s (5]- Uniaxial
tension or comprcssion has no effect on arm chair (5, 5) tubes whereas in other cases the
nature of change in bandgap with uniaxial strain depends on the chiral angle. For

example, the bandgap change with strain is stronger for a (10, 0) tube than for a (6, 5)



tube. In general, three types of transitions have been observed [5]: (1) metal-
semiconductor transition, example (9, 0) tube at 1% strain, (2) dE/d (strain) changes sign
due to quantum number change, example (10, 0) at 10% strain; and (3) dE/d (strain)
changing sign due to mechanical relaxation, example, (10, 0) tube at 18% strain. Similar
quantifications have also been done for the effect of torsion. Beyond electronic
properties, the effect of vacancies and disorders on the conductance of nanotube quantum
wires also has been modeled [6]; Theoretical work leading to the orgamzatmn of T and
Y junctions involving metallic and semiconducting nanétubes has been presented by
Menon and Srivastava [7] which can lead to interesting logic gate arrangements. Indeed,
this concept was recently verified ny transport measurements on Y-junction nanotubes
[8). The experimental results show intrinsic nonlinear transport and reproducible
rectifying behavior. Prior to this, demonstration of transistor effect in nanotube-based
FET-like devices has been made by Tans et al (9] and Martel et al (10]. Among various
nanowires, the largest current to this date can be driven through CNT: a small bias
,resistance of 12.5 k€ [11] has been recorded through a multi-wall nanotube. This

resistance is only twice the theoretical minimum of 6.25 kQ through a single wall of a

nanotube. Reference 12 demonstrated a resistance as small as 500 Q in a sample making

contact to many layers of a carbon nanotube.



Growth of Single-Walled Nanotubes

Growth of single-walled nanotubes (SWNT) has been primarily accomplished by laser
ablation or carbon arc techniques. The product typically consists of SWNT along with
catalyst metal particles and amorphous carbon. Purification techniques have been
developed to isolate SWNT from the product and previous device demonstrations [9, 10]
have used purified SWNT to fabricate FET-like structures as well as in current transport
studies. As it is difficultto hancﬁe nanotubes to make devices as in references 9 and 10, it
is important to develop approaches to grow SWNT on patterned substrates which can
lead to device integration. In this regard, chemical vapor deposition seems to be an ideal

technique for growing nanotubes on patterned substrates [13].

Our CVD approach uses hydrocarbon feedstock (methane or ethylenc) at temperatures
700-900° C at atmospheric pressure. SWNT growth requires a transition metal catalyst
which we have been able to deposit on silicon substrates either from solution or by |
physical sputtering. The spot size by the solution technique is always larger than by
physical sputtering. The nanotube diameter depends on the catalyst particle size.
Therefore, the catalyst deposition technique, particularly the ability to control the particle
size and keep the catalyst particles faithfully within patterns, is critical to developing
nanodevices. Progress on this front is slow. Figure | shows a transmission electron
microgréph of a SWNT grown by CVD. Our current work focuses on correlating catalyst

particle size to nanotube properties and developing device-specific processing steps.



Bragg Reflection in Carbon Nanotube Wires

At the band center of a metallic carbon nanotube, there are two sub-bands. When
coupling to contacts is perfect and in the absence of defects, this will yield a minimum
resistance of 6.25 kQ at small voltages. At large applied voltages, electrons are injected
into numerous sub-bands. For example, there are more than 25 sub-bands in a (30,30)
armchair nanotubes at an energy of 2.5¢V (The number of sub-bands available for
transport off band center typically decreases as inverse of the carbon nanotube
diameter.). If all these sub-bands contribute to current, the differential resistance due to a
single nanotube layer can be as small as 500 Q. Contacting many layers will yield an
even smaller resistance. Scattering mechanisms due to defects and phonons will reduce
the resistance. Inthissection,weaddr@theissueofanintrinsicmechanismtbatlimits
the current carrying capacity of a CNT that plays a role even in a defect and phonon free

situation.

'We consider the truly metallic armchair nanotubes and assume perfect carbon nanotube
leads. The calculations are within the context of a pi orbital per carbon atom with the
nearest neighbor hopping parameter equal to 3.1 eV. We calculate the single particle
transmission probability and current by the procedure in reference 6. Thus true many
body effects such as in Luttinger liquids are neglected [14). [n a current versus voltage
calculation it is important to take the' potential drop across the nanotube into account.

This should in principle be determined by the self-consistent solution of Poisson's



equation and a quantum mechanical procedure to calculate the non equilibrium electron
density, which is a difficult problem for nanostructures. We believe that to convey the
essential physics, plausible potential drops across the nanotube are sufficient. The
potential drop [V(x)] is an input to the Hamiltonian and is modeled by changing the on-

site potential. The assumed functional form for V(x) is,

L L
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where V, is the applied voltage, L is the length of the nanotube, L, is a parameter that
determines the nature of the voltage drop and x is the nanotube axis. L,. > L implies a
linear voltage drop. The voltage drop in quasi 1D structures is expected to have a more
gradual dependence than the exponential drop in Eq. (1). So the chosen dependence is a
conservative one. In choosing L, we are guided by theoretical calculations, which have
yiclded reasonably large screening lengths even for armchair tubes [15]. The results
presented below for the (10,10) nanotube however do not change significantly over the
'range of (25-200 A) considered. The current is computed using the Landauer-Buttiker

' formula,

I = | dET(E)f,(E) - fo(E)] (2)



where, T(E) is the transmission probability, and f.(E) and fr(E) are the Fermi factors in

the left and right contacts respectively.

We first focus on the defect free case ('no defect’ of Fig. 2). The surprising feature here is
that the maximum conductance is only 4e*/h. This conductance is equal to the value
obtained if only two sub-bands conduct. Note that for a (10,10) nanotube, the first non
crossing sub-band opens at around 0.85¢V. It is clear from the [f.(E) - fa(E)] factor of Eq.
(2) that this means that electrons injected into this sub-band can carry current at an
applied voltage of 1.7V if the transmission probability is larger than zero. There is
however no indication of an increase in the differential conductance in Fig. 1. What
happens to the electrons injected into the non crossing sub-bands of the nanotube? The
answer to this issue can be understood by considering the semiclassical picture of
electron flow from the left to the right contact. Fig. 3 is a plot of the Eq(k) relationship of
a nanotube at different positions along the length, where » is the sub-band index. The
sub-band centers at the left and right ends of the nanotube are at voltages of V, (the
applied voltage) and zero respectively. For V, < 3.1V, an electron injected from the left
contact in between the Fermi energies of the right (4g) and left (u() contacts in the two
-available crossing sub-bands flow to the'right contact unimpeded. In contrast, the
reflection probability of an electron injected into a non crossing sub-band is large. The

wavevector evolution under the influence of a static electric field (F(r)] is given by,

1 dk _ _1dE,®
e —F(r) and v, (k) e 3)



The wavevector of an electron injected from the left contact into a non crossing sub-band
(n) increases, as the electron propagates to the right in Fig. 3. The velocity va(k) in sub-
band n is zero at the sub-band extrema, which defines the location of Bragg reflection.
The dotted horizontal line is an example of an electron injected from the left contact into
a non crossing sub-band, which undergoes Bragg reflection at the location of the arrow. It
can be seen that such a reflection also occurs in all other non-crossing sub-bands. As a
result, the non crossing sub-bands do not contribute to current and the maximum
differential conductance is approximately 4¢’/h. Alternately, in Fig. 3, a horizontal line at
any given energy in between e and 4 passes through a region where only the crossing
sub-bands are present. An electron incident into a non-crossing sub-band at this energy
can reach the right contact only by passing through a region where only the crossing sub-
bands are present. Hence in the absence of either significant inter sub-band or inelastic
scattering, they must be reflected. In the ‘no defect’ case of Fig. 2(a), the current plateaus
out for voltages larger than 3.1V and this leads to a differential conductance that is close
to zero [Fig. 2(b)]. Applying a voltage larger than 3.1 V leads to electrons in some en&gy
ranges being Bragg reflected, while new energy ranges contribute to transport. They
conspire in a manner so as to keep the total current constant in the voltage range shown.
The effect of two other relevant mechanisms that lead to differential conductances larger
than that shown by the solid line in Fig. 2-are now calculated. They are defect scattering
and inter sub-band tunneling. We model defects by a random change in on-site potential
as discussed in Ref. 6. From a physical view point, Bragg reflection of electrons incident

in the non crossing sub-bands will be weakened as electrons have a non zero probability
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to reach the right contact by defect aided scattering to right moving states in sub-bands
other than the incident one. The results of calculations that fully account for such
processes are shown in Fig. 2. The differential conductance is clearly larger in the
presence of defect scattering at larger voltages for reasons just discussed. The absolute
value of current can be larger or smaller than in the 'no defect’ case and this depends on
the extent of defect scattering. Clearly, large defect scattering leads to currents smaller
than in the 'no defect' case. An important point here is that the differential conductance
remains smaller than the small bias values. This is because an electron incident into a
non-crossing sub-band from the left contact between ix and ;. can reach the right
contact only by passing through a region where only the crossing sub-bands are present.

This results in a bottle neck for driving current commensurate with the number of sub

bands into which electrons are injected. .

We now present results concerning the role of Zener type inter sub-band scattering in the
absence of defects [16]. If most of the applied voltage drops across short lengths of the
tube such that the electric field is large, inter sub-band tunneling will aid in leading to
larger differential conductances even in the absence of defect scattering. The distance
over which an electron should tunnel before réaching the next sub-band in the presence of
an electric field will depend on the energy spacing between sub-bands. The energy level
spacing decreases (AEnc of Fig. 3) with increase in nanotube diameter. So, the Zener
tunnelin§ probability increases with increase in diameter. This is illustrated in Fig. 4,
which shows the current versus applied bias for nanotubes of various diameters. The data

for Fig. 4 was computed by assuming that the applied voltage drops uniformly over a
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distance of 104. The (20,20) nanotube has the smallest AEnc (approximately 0.9 eV)
amongst these nanotubes. The Zener tunneling current is correspondingly the largest.

The (5,5) nanotube has AEnc corresponding to 3.4eV, and so Zener tunneling is absent

because of the large barrier to tunneling.

In summary, in the case of perfect contacts and absence of defects, there are three
possibilities for an electron injected from the left contact (Fig. 3): (i) Direct transmission:
an electron is transmitted in the injected sub-band as shown by the solid line, (ii) Bragg
reflection: reflection that occurs when the wave vector (k) of an injected electron evolves
to a value where the velocity in sub-band 7, va(k) = 0. An electron undergoes Bragg
reflection at the location of the arrow corresponding to the dotted line, and (iii) Inter sub-
band Zener type tunneling: tunneling between sub-bands induced by an electric field. |
The spacing between non crossing sub-bands (AEnc of Fig. 3) decreases inversely with
increase in nanotube diameter. So, Zener tunneling should become increasingly important
in determining the I-V curve with increase in nanotube diameter. The relative importance
of these three phenomena depends on the energy, potential profile, and nanotube

Metal-Nanotube Coupling

In many experiments, nanotubes and metal couple by weak distributed coupling over the
side wall over many unit cells of the nanotube [10, 11, 17, 18]. In this case details such as
the diameter and chirality of the nanotube, Fermi wavevector of the metal, area of

contact, and details of the metal-nanotube contact will play a role in determining the
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transmission properties. We discuss some of these issues here. The formalism has been
discussed in Ref.19: The metal electrode has a rectangular cross section in the (x,y) plane
and is infinite in the z -direction (Fig. 5). The nanotube lies on the metal electrode and is
stretched out in the circumferential direction. The Hamiltonian of the nanbtubel however

reflects the periodic boundary conditions that yield the nanotube band structure.

If the metal and nanotube make uniform contact over several unit cells, wave vector

conservation along the axial direction of the nanotube is enforced. However, the wave

vector conservation along the circumferential direction is relaxed because of the finite
extent of contact with the metal. The band structure of the nanotube yields that the axial

wave vector corresponding to E = 0 are 21/3a9 (0) and 0 for armchair and zigzag tubes
respectively [4]. As a result, the threshold value of Fermi wave vector below which
coupling between an armchair (zigzag) nanotube and metal is poor is 21t/3a, (0). As the
diameter of the nanotube increases and the contact length with the metal increases in the
circumferential direction, wave vector conservation along the circumference also |

becomes important.

Fig. 6 shows the transmission probability from metal to armchair nanotube as a function
of contact length. The units of contact length is number of nanotube unit cells, and the
Fermi wavevector of metal (k) is shown for each case. The transmission does not
increase with contact length for k= 0.754"'. This is because axial wavevector
conservation requires the metal to have a minimum wavevector of 21/3a, = 0.854 to

couple to nanotubes at energies close to E=0. For larger kj, the transmission probability
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increases with increase in contact length. The transmission probability versus contact
length of zigzag tubes (Fig. 7) have two differences from armchair tubes. The first point
is that there is no threshold Fermi wavevector of the metal below which the nanotube
does not couple to the metal. This is shown in the ke = 0. 44! 'case, where the transmission
monotonically increases with contact length, in contrast to the k; = 0. 754"/ case of
armchair nanotubes. A threshold &/ is absent for zigzag nanotubes because the sub-bands
at £ = ( cross at k£ = (. The second point is that for k; = 1. 24 (Fermi wavevector for
gold), the tz;nmnism'on probability is smaller than the corresponding armchair case. This
is because the nanotube wavevector in the circumferential direction (%) of metallic
zigzag tubes is large. k. = 4n/3a, = 1.74 for the crossing bands and as a result, the
overlap integral in the Born approximation, <'¥, | H,., | ¥a> is small. ¥, and ¥, are the

metal and nanotube wave ﬁmctions, and H.., represents the nanotube-metal coupling.

The transmission probability increases monotonically with contact length as seen in the
experiments of references 11 and 17 (Figs. 5 and 6). This dependence arises because in
the limit of weak metal-nanotube coupling, increase in contact length results in an
increase in the transition probability to scatter from metal to nanotube. The transmission -
will saturate at large contact lengths as there are only two conducting sub-bands at the
band center. In contrast, in the limit of strong nanotube-metal coupling, the transmission
probability will reach its maximum by contacting only a few layers along its length. In
both Figs. 6 and 7, the transmission probability increases with increase in k.. This feature
arises because electrons with a wavevector component along the nanotube axis that is

larger than 27/3a, (0) for armchair (zigzag) nanotubes can scatter from the metal to
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nanotube, and a larger &, implies a large number of available metal electron states. So,
from this view point it can be concluded that a larger metal Fermi wave vector is more
desirable for the purpose of contacts to nanotubes [20]. For the purpose of these
calculations, we considered a (2,2) armchair tube and a (3,0) zigzag nanotube. The

essential physics is in principle true for larger diameter nanotubes also.

Concluding Remarks

We have provided a brief overview of the expected role of carbon nanotubes in future
nanoelectronics.' The key to device development is the controlled growth of nanotubes on
patterned substrates with control over diameter and chirality. Catalyst preparation is
critical to achieve the controlled growth. We have demonstrated physical sputtering of
transition metals on patterns to be a viable technique in preparation of nanotubes. We
have also presented some theoretical aspects of transport in nanotubes. We calculated the
ballistic current through a carbon nanotube by neglecting electron-phonon and electron-
electron interactions. We find that the current carrying capacity of metallic carbon
nanotube wires is limited by the current flow through the non crossing subbands.
Electrons injected in the non crossing subbands are primarily Bragg reflected. As the
diameter of the nanotube increases Zener tunneling can contribute to current because the
energy barrier for tunneling becomes smaller (AEnc decreases as inverse diameter).
Metal-nanotube coupling exhibits an interesting behavior with chirality. The physics of
this behavior lies in the variation of wave vector corresponding to E=0, with chirality. As

a result, the threshold Fermi wave vector of a metal contact is 0.85 and 0 inverse
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Angstroms for anmchair and zigzag nanotubes respectively. We also find that at a Fermi
wave vector of 1.2 inverse Angstrom (gold), an armchair tube couples better than a |
zigzag tube to a metal. This behavior arises because of the larger momentum in the

circumferential direction in the case of zigzag nanotubes.
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Figure Captions

Fig. 1.

Fig. 2:

Fig. 3:

Fig. :

TEM image of a single wall nanotube grown by CVD

(a) The current versus voltage of a 1000 A long (10,10) armchair nanotube when
the applied voltage drops uniformly across the nanotube. (b) The differential

conductance is smaller than 4e’/A even though electrons are injected into a large

number of sub-bands at higher energies.

Each rectangular box is a plot of energy versus wavevector with the sub-band
bt')ttom equal to the electrostatic potential in that section. Only a few sub-bands
are shown for the sake of clarity. This plot aids in understanding the results in
Figs. 2 and 4. The crossing sub-bands which are transmitted contribute to

current. The contribution to current by the non crossing sub-bands is determined

by the competition between Bragg reflection and Zener type tunneling.

: The current versus voltage in the case of a 1000 A long (20,20) nanotube for

L, = 10 and 100 in Eq. (1). Note that for the smaller screening length (L),

Zener tunneling contributes to current and so the [-V characteristic deviates from

the L, = /00 case and the solid line of Fig. 2.

Nanotube lying on a metal contact. The length of the metal contact along the z-

direction is inﬁpitely long (open boundaries).
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Fig. 6: Plot of transmission probability versus contact length between metal and

armchair nanotube, for three different values of the metal Fermi wavevector (k).

Fig. 7. Same as Fig. 6 but for zigzag nanotubes.
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